[CS231n] Convolutional Neural Networks for Visual Recognition, Standford Univers
본문 바로가기

Deep Learning/CS231n

[CS231n] Convolutional Neural Networks for Visual Recognition, Standford Univers

강의 자료

강의 공식 사이트 : https://cs231n.stanford.edu/index.html
Spring 2017 강의 on Youtube : https://www.youtube.com/playlist?list=PL3FW7Lu3i5JvHM8ljYj-zLfQRF3EO8sYv
Spring 2017 강의 프로젝트 리포트 : https://cs231n.stanford.edu/2017/reports.html
강의 노트 (Spring 2024 숙제 리스트, 사전지식 강의) : https://cs231n.github.io/
Github : https://github.com/cs231n/cs231n.github.io

번역 자료

영어 자막 한글 번역본 : https://github.com/visionNoob/CS231N_17_KOR_SUB
한국어 설명 동영상 : https://www.youtube.com/playlist?list=PL1Kb3QTCLIVtyOuMgyVgT-OeW0PYXl3j5

목차

LectureDescriptionYoutubeSlidesURL
1 Introduction to Convolutional Neural Networks for Visual Recognition videoslide 
2Image Classificationvideoslide 
3Loss Functions and Optimizationvideoslide 
4Introduction to Neural Networksvideoslide 
5Convolutional Neural Networksvideoslide 
6Training Neural Networks Ivideoslide 
7Training Neural Networks IIvideoslide 
8Deep Learning Softwarevideoslide 
9CNN Architecturesvideoslide 
10Recurrent Neural Networksvideoslide 
11Detection and Segmentationvideoslide 
12Visualizing and Understandingvideoslide 
13Generative Modelsvideoslide 
14Deep Reinforcement Learningvideoslide 
GuestInvited Talk: Song Han
Efficient Methods and Hardware for Deep Learning
videoslide 
GuestInvited Talk: Ian Goodfellow
Adversarial Examples and Adversarial Training
videoslide 

References