강의 자료
강의 공식 사이트 : https://cs231n.stanford.edu/index.html
Spring 2017 강의 on Youtube : https://www.youtube.com/playlist?list=PL3FW7Lu3i5JvHM8ljYj-zLfQRF3EO8sYv
Spring 2017 강의 프로젝트 리포트 : https://cs231n.stanford.edu/2017/reports.html
강의 노트 (Spring 2024 숙제 리스트, 사전지식 강의) : https://cs231n.github.io/
Github : https://github.com/cs231n/cs231n.github.io
번역 자료
영어 자막 한글 번역본 : https://github.com/visionNoob/CS231N_17_KOR_SUB
한국어 설명 동영상 : https://www.youtube.com/playlist?list=PL1Kb3QTCLIVtyOuMgyVgT-OeW0PYXl3j5
목차
Lecture | Description | Youtube | Slides | URL |
1 | Introduction to Convolutional Neural Networks for Visual Recognition | video | slide | |
2 | Image Classification | video | slide | |
3 | Loss Functions and Optimization | video | slide | |
4 | Introduction to Neural Networks | video | slide | |
5 | Convolutional Neural Networks | video | slide | |
6 | Training Neural Networks I | video | slide | |
7 | Training Neural Networks II | video | slide | |
8 | Deep Learning Software | video | slide | |
9 | CNN Architectures | video | slide | |
10 | Recurrent Neural Networks | video | slide | |
11 | Detection and Segmentation | video | slide | |
12 | Visualizing and Understanding | video | slide | |
13 | Generative Models | video | slide | |
14 | Deep Reinforcement Learning | video | slide | |
Guest | Invited Talk: Song Han Efficient Methods and Hardware for Deep Learning | video | slide | |
Guest | Invited Talk: Ian Goodfellow Adversarial Examples and Adversarial Training | video | slide |
References